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Abstract

Second-order effects upon the wave systems associated with
bodies in uniform supersonic flight are considered. An appropri-
ate scaling of the independent variables is introduced to take
into account the locally small, but cumulative, nonlinearities
which undermine the validity of the classical perturbation theories
at large distances from the body.

For planar flows, the solution valid at large distances from
the body (the wave structure solution) is uniformly valid to the
body surface, and the boundary conditions may be applied directly.
For this case, the simple wave results of Friedrichs as corrected
and extended by Lighthill are confirmed, with a minor correction
noted for the location of the rear shock at very great distances
from the body. It is noted that effects locally of third order
must be taken into account behind the trailing shocks to give proper
global integrals relating to the 1lift and drag of the airfoil sec-
tion and to determine the positions of the trailing shocks to second
order.

For flows about finite bodies, the wave structure solution must
be matched with a quasi-cylindrical, local solution to provide the
inner boundary condition. This procedure gives rise to an inter-
mediate (or one-and-one-half-order) solution which corresponds to
the first-order solution over a slightly modified body. In these
two wave structure solutions, the azimuthal angle enters only as a
parameter, and the flow in each azimuthal plane may be thought of
as that about some equivalent body of revolution. Dependence upon
azimuthal angle does arise in the true second-order wave structure
solution. The complete general solution has been found for this
second-order equation, but the third-order local solution is required
to effect the matching which determines the inner boundary condition.
For flows over bodies whose surfaces lie everywhere near an axis
aligned to the flow, an additional matching is required with a solu-
tion valid near the body: surface to determine the local solution.
This slender-body solution is also required to third order to de-
termine the wave structure solution to second order. The lack of
a local second-order theory of sufficient generality is the major
hurdle in determining the wave structure solution. Local third-order
solutions can presently be obtained for only the simplest conical
geometries.

Predicted shock angles for the flow over slender wedges (planar
flow) and cones (axisymmetric flow) are compared with exact inviscid
calculations to show the improvement afforded by inclusion of second-
order effects. Inclusion of the full second-order solution is re-
quired to achieve appreciable improvement over the first-order theory
for the conical case.
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Chapter One

The Introduction

1.A. General Introducfion

The present treatise is concerned with the mathematical descrip-
tion of the wave systems which emanate from bodies in supersonic
flight, and, in particular, the behavior of these systems at large
distances from the body. A perturbation theory, which includes ac-
count of essential cumulative nonlinearities, is considered, accurate
to terms of second order.

Such a problem is of practical interest as it relates to the cal-
culation of sonic boom overpressures, where we are interested in pre-
dicting the effects of a high flying, supersonic aircraft in the vi-
cinity of the ground. It is also of theoretical interest as it illus-
trates techniques useful in solving problems of weakly nonlinear wave
propagation. For, while the classical linearized theories of super-
sonic aerodynamics are perfectly adequate for the prediction of dis-
turbances near the body (and especially surface pressures), the failure
of these theories at large distances from the body has long been recog-
nized, and a correct theory must in some way account for cumulative
nonlinearity within the wave system.

The equations of steady, compressible fluid flow are inherently
nonlinear, even when the simplifications of negligible viscosity and
irrotationality are used. The mathematical treatment of nonlinear
equations is still largely restricted to especially simple cases, and
the complexity of the fluid flow equations precludes treatment in any
generality without additional assumptions to provide further simpli-
fication.

Perhaps the most useful simplification -- at least for the case
of supersonic aerodynamics -- is to consider that the flow is every-
where a small perturbation upon some known flow field (usually uni-
form). The nonlinear problem is then broken up into a hierarchy of
simpler (often linear) problems, and the solution may be found as an
asymptotic series, successive terms of which contain factors of higher
order in the perturbation parameter.

" The classical approach to perturbation theory for steady super-
sonic aerodynamics yields the scalar wave equation for the velocity
potential, to be solved subject to appropriate boundary conditions, as
a first approximation. Higher approximations also satisfy the wave
equation, but with additional nonhomogeneous terms which are known
functions of the lower-order solutions. Thus, a hierarchy of linear
problems is set up and may be solved to any degree of accuracy desired.
Since the homogeneous part of each equation is always the scalar wave
equation, the characteristics are not revised in successive approxi-
mations. Higher approximations may then be thought of as giving suc-
cessive terms in the Taylor series expansion of the exact solution
about the linearized (freestream) characteristics (Van Dyke (1952)).



Such a scheme has been extremely useful for predicting distur-
bances near bodies immersed in supersonic streams, especially for
predicting surface pressures. However, since the characteristics
are not revised in higher-order solutions, the predictions become
increasingly inaccurate as the distance from the body is increased.
Such behavior is a result of the "nonuniform validity" of the lin-
earized solution. I.e., the solution obtained by such a scheme is
not equally accurate at all distances from the body. Physically,
this is due to the fact that the actual (exact) characteristics and
the linearized (freestream) characteristics are getting farther apart
as they are followed away from the body. This deficiency is serious
if we are concerned with accurately describing the flow field at
large distances from the body, and is interesting from a theoretical
viewpoint as it illustrates the nature of (at least one type of) non-
linearity which must be accounted for to achieve uniformly valid
solutions.

The essential nonlinearities in the solution at large distances
from the body may be accounted for in two ways. We could solve the
purely linear problem for the solution on the linearized character-
istics, and simultaneously correct the placement of these character-
istics in physical space due to the perturbations of the solution.
Or, we may try to rescale the independent variables of the problem
in such a way as to bring the essential (or cumulative) nonlineari-
ties into the lower-order problem. Hopefully, this rescaling will
also provide some simplification in the other terms of the equation,
so that the new equation will be mathematically tractable. In this
second approach, the first-order equation will be nonlinear (as it
must be to achieve our goal)}, but higher-order equations will again
be linear.

This second method will be used here. The specific purpose of
the present treatise is to discuss the nature of the second approxi-
mation, or the second term in the asymptotic series representation
of the perturbation solution, valid uniformly to large distances
from the body.

The purpose of such a second-order theory is two-fold. First,
it may provide increased numerical accuracy for solutions simple
enough to be calculated analytically. But, secondly, and more im-
portantly, a study of the second-order solution is one way to verify
the uniform validity of the first-order solution, thus showing that
the entire procedure is indeed a rational approximation to the exact
solution in some limit. Further, such a study gives greater insight
into the nature of the first approximation, and provides limits on
the accuracy of that theory.

1.B. Relevant previous researches

The background of the linear theory of supersonic aerodynamics
is well established in the literature and textbooks, and will not be
discussed here. (See, e.g., Ward (1955) or Heaslet and Lomax (1954)).
Local second-order effects were considered by Van Dyke (1952).
He solved the potential equation by iteration (i.e., using the first-
order solution to evaluate quadratic terms) to obtain a second

2



approximation. He found complete particular integrals for the non-
homogeneous terms in the cases of planar and axisymmetric flows, thus
reducing the second-order problem to an equivalent first-order prob-
lem. His solutions gave marked improvement for the calculation of
surface pressures, but were not uniformly valid at large distances
from the body. He recognized this fact, and realized that it was due
to the inability of the theory to revise the characteristics ‘in suc-
cessive approximations.

Friedrichs (1948) first obtained solutions accurate to second
order and uniformly valid to large distances for the planar flow over
airfoils, using the fact that the flow is (to second order) a simple
wave. Correction of his expression for the shock slope in terms of
the perturbation quantities on either side and inclusion of effects
due to the broad third-order waves behind the trailing shocks (which
have a cumulative effect of second order) were discussed by Lighthill
(1954).

Whitham (1952) rendered the first-order solution for the flow
over slender, axisymmetric bodies uniformly valid to large distances
by applying the coordinate straining technique of Lighthill. This
essentially uses the linear solution to correct the placemeant of the
characteristics in the physical plane.

Hayes (1954) used the method of rescaling the independent vari-
ables to order terms according to their cumulative (rather than local)
effects to obtain the proper form of the first-order wave structure
for more general flows. For flows about finite planar systems, the
method relies upon the method of "'coincident signals' of Hayes (1947)
to supply the appropriate boundary condition in terms of the large-
distance asymptotic behavior of the local solution.

Work currently in progress by Landahl et al, (1968), and some-
what parallel to the present study, has looked briefly at second-order
corrections to the wave structure theory of Hayes. They have inde-
pendently noted the need for an intermediate homogeneous wave struc-
ture solution for flows about finite systems (which we term of one-
and-one-half order), which is determined by the local second-order
solution. This result is used to support the need for experimental
surveys in the absence of a complete second-order local theory.

The nonuniform validity of the linear theory at large distances
is equivalent to the singular behavior of the linear solution near
the Mach cone in problems of the conical type. This is because the
relevant parameter is the ratio of the distance a characteristic has
travelled from the body to the axial distance along the body from
which the characteristic started, and this ratio becomes very large
for waves near the leading Mach cone. This nonuniformity may be rec-
tified using either of the two methods previously mentioned for the
wave structure problem. Lighthill (1949) applied the method of
strained coordinates to the problem to determine the shock wave po-
sition to first order (i.e., its lowest-order deviation from the
freestream Mach cone). Broderick (1949) used a separate expansion
scheme valid near the Mach cone (essentially the method of matched
asymptotic expansions) to prove that his expression for the second-
order surface pressure on a circular cone, derived without consid-
eration of the shock, was correct to that order, and also verified



Lighthill's expression for the position of the shock to first order.
Bulakh (1961), in the Soviet Union, showed Broderick's result for a
general conical flow, and again verified Lighthill's result for the
shock wave position to first order. .

The current work also bears a formal resemblence to the second-
order transonic theory cf Hayes (1966). The effects which exert a
cumulative influence upon the supersonic wave system are locally im-
portant in transonic flows. Thus, the similarity coefficients of
the two theories (in the sense of Van Dyke (1958) as giving the form
of the solution) are essentially the same.

1.C. General nature and scope of present theory

The present treatise presents a perturbation theory for steady,
inviscid supersonic flows which is uniformly valid to large distances
from the body of interest. The theory is basically an extension to
include second-order effects of the first-order wave structure theory
of Hayes (1954b). Uniform validity of the solution to large distances
is obtained by rescaling the independent variables of the problem such
that nonlinear terms are ordered according to their cumulative (rather
than local) effects in an outer, or wave structure, region. The solu-
tion so obtained is uniformly valid to the body surface for planar
flows, but the inner boundary condition for flows about finite systems
must be obtained by matching with an appropriate local solution.

The complete theory of planar flows is presented, along with a
sample solution. The results obtained confirm those of Friedrichs
(1948), obtained by a characteristics method, as corregted and ampli-
fied by Lighthill (1954), except for the position of the rear shock at
great distances from the airfoil, where the Lighthill result is in
error (see Appendix B).

For the case of flows about finite systems, the matching with the
local second-order solution reveals the necessity of a one-and-one-half-
order wave structure solution, satisfying homogeneous equations. This
corresponds to a first-order solution over a slightly modified body.
The third-order local solution is required to obtain the second-order
wave structure solution. The complete general solution of the second-
order wave structure problem has been found, but difficulty in obtain-
ing the third-order local solution to provide the inner boundary con-
dition precludes calculation of any examples (except the rather spe-
cialized case of a right circular cone at zero angle of attack).

In the following chapter, the basic equations are developed, and
a brief discussion of the scaling of the wave structure region is in-
cluded. Chapter Three specializes the analysis to planar flows. The
general form of the solution is given, as well as some specific fea-
tures noted from the sample solution. Flows about finite systems are
treated in Chapter Four, including the matching problem with the local
solution. The most important results are summarized in Chapter Five,

~along with some general.remarks on future researches. Details not
essential to the development of the text are included in the appendices.



Chapter Two

The Development of Basic Equations

2.A. Potential Equation

As the heading of this section suggests, we shall work almost
exclusively with a velocity potential. This allows us to describe
the vector velocity field by a single scalar equation, but not with-
out the loss of some generality. That such a potential exists de-
pends heavily upon our assumption of small perturbations, and par-
ticularly that there be no strong shocks in the flow. For, while
the flow is initially irrotational, and considered to be inviscid,
we cannot completely disregard the entropy increments caused by
shock waves, and it is vorticity arising from the variation in
strength of these discontinuities that would eventually force us
to abandon the use of a velocity potential if we were interested
in a theory more accurate than the second order.

It can be shown that, for our purposes, a velocity potential
exists everywhere in the flow field to the required order except
behind the trailing shocks, where entropy and velocity (pressure)
perturbations are of the same order. (See Appendix A). This is
essentially because the entropy increment at a weak shock wave is
of third order in the strength of the wave, and we are concerned
with only s&cond-order effects. We are interested in the third-
order quantities behind the trailing shocks only because they have
a cumulative influence upon the position of these shocks which is
of second order (See section 3.C.).

We consider a steady, homocompositional, homoenergetic, in-
viscid fluid flow. The equations of continuity, momentum conser-
vation, and isentropy for such a flow may be written

V(Q?) = O, | ' (2.01)
’t?,- W? +_QLVP = O, | (2.02)
'? vS= 0, (2.03)

where is the fluid density, IF is the vector velocity, P is
the pressure, and S is the specific entropy.

We form a modified continuity equation by converting the den-
sity gradient to a pressure gradient, using the condition of isen-
tropy:

vfeafre-0. o
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where @ is the acoustic velocity.
Then, eliminating the pressure gradient between this and the

momentum equation (2.02) yeilds

?-(?-V?‘) - sz,-f - O. (2.05)

Or, introducing the velocity potential, 55 , such that

‘?j =v§, (2.06)

we have

Evd = v -v(FvE®) . (2.07)

This is the fundamental equation for all steady, irrotational
flows. It is an exact equation, subject only to the requirements
of steadiness, homocompositionality, homoenergy, and homoentropy.
It is, however, nonlinear and extremely difficult to treat with
any generality. (Note that the nonlinearity arises not only from
the right-hand-side of the above equation, but also from the fact
that @% is also a function of the potential, g ).

Therefore, additional assumptions must be made to cast the
problem as one that is mathematically tractable. A standard tech-
nique (and the one we shall use) is to assume the flow may be des-
cribed as everywhere a small perturbation upon a uniform streaming
motion. This allows us not only to expand the right-hand-side of
the equation, neglecting higher-order products of the perturbations,
but also to expand the acoustic velocity in powers of the pertur-
bations. Thus

o’ = Q;+Z(f'-l){£ + /_%O.P(%)z-f O(&%f J:S')) (2.08)

where I and o are thermodynamic parameters of the fluid (always
understood to be evaluated in the undisturbed stream) and defined

by

= 7‘{(%’95 , (2.09)

o = ‘&(‘g—g)s . (2.10)



The symbol ® designates the difference of the quantity it precedes
from its value in the undisturbed stream, and the subscript ( Jeo
refers to evaluation in the undisturbed stream For a calorically

perfect gas, ™ = l"z'l and o =0

In order to use this expansion in the potential equation, we
must have a relation between the pressure perturbations and the
velocity (potential) perturbations. Such a Bernoulli relation may
be derived as follows. For a homocompositional, inviscid flow, the
Crocco-Vaszonyi theorem states

?’x (Vx?_") =VH~-TvS , (2.11)

where H 1is the total enthalpy and T 1is the temperature of the
fluid. This may be combined with the momentum equation to give, for
a homoenergetic (i.e., H = constant) flow,

2
%:—%@--TVS) (2.12)

which may be expanded and integrated to give

[4 - U5 iS00I i), e

where U 1is the undisturbed, or free-stream, velocity. We may
also write a formal, thermodynamic expansion of this integral,

f?f o0 2&,(%2) +3Q,(J(ZF) O(f& Jf&) (2.14)

And comparison of the last two results, by an iterative process,
yields

% -~ cbf Uv(v¢ )
2 2 2.
L (R gy e

This is the required Bernoulli equation which relates pressure
perturbations to changes in velocity potential. Here we have
introduced the perturbation potential, ¢ . .

g-vd - ult+ vel (2.16)

7



where T 1is a measure of the maximum body slope, ¢ 1is the body

length (chord), and p:VM‘—{ with M= U/a,, We have also in-

troduced the Prandtl-Glauert coordinates

m
i
x

o

(2.17)

Al =S|
i} 0}

™ o
R

in place of a cartesian system (x,y,z), with its x-axis aligned to
the freestream, and have used the notation

P I
V=Ja_ﬁ+ kég-_—g"

The Bernoulli equation may 'be substituted back into equation
(2.08) to give

o= 0 - 2.(’-_‘,3’)_‘]_%? - L—f]sl‘:{(r-()( ¢;+/3’l7¢?')-0'/"ﬁ’11¢; }+ (2.18)

Finally, this may be substituted back into the fundamental poten-
tial equation (2.07), the right-hand-side of that equation expanded
in terms of the perturbation potential, and we arrive at

V- Fee = %{%{Bﬁgg + Z(v¢-vz¢f-¢f¢ﬁ)
+2(-) by (v-p) | + (T (G 1) (0829 5 16,
+ o0 (724 g + L (1-0) 67 b
+ 269D Ve G- b 9% 5 (v (- wpvg)f +

This equation for the perturbation potential, ¢’ , is the
starting point for all perturbation theories, and in the above
form is accurate to third order in the local perturbation quan-
tities. It is an extension of the equation given by Van Dyke
(1952) to include all third-order quantities (not just those im-
portant near a slender body), and is derived for a general fluid
(not a calorically perfect gas).

2.B. Shock relations

A peculiar feature of nonlinear partial differential equations
is the presence of regions in the physical plane where the solution
is multiply defined, due to the overlap of characteristics coming
from different points on the boundary or initial data. In our case,



i

this difficulty is overcome by the insertion of shocks, or discon-
tinuities in the solution (or its derivatives), across which the
solution jumps from one branch to another in the characteristic

plane. The intermediate portion of the solution is then omitted

to render the solution unique in the physical plane.

These shocks are inserted according to the classical Hugoniot
conditions for conservation of mass, momentum, and energy fluxes
across the discontinuity surface, and the requirement that the
tangential velocity be continuous across the surface.

We describe the shock location as

Esh(vz, D, (2.20)

and use square brackets, [ ], to denote the jump in any quantity
across the discontinuity surface. Thus, the requirements of con-
tinuous tangential velocity and normal mass flux may be written

[¢]=0 |, (2.21)

and

[Q%q]= O, (2.22)

respectively, where 1? is the velocity component along the normal
to the discontinuity Surface. The conservation of energy is auto-
matically assured through our use of the Bernoulli equation (2.15)
to relate pressure, velocity, and entropy perturbations. Finally,
in place of the usual momentum relation, we shall use a quantitative
expression for the entropy jump

=[S]= 'g%ﬂ[}-.]a + 0([%;]"), (2.23)

which is valid for weak shock waves. (See, e.g., Hayes (1954a.).)
We may expand the density as

L dp - 2 ) |
Q=(>.o{l+a:"€i %(—&) M Q)-%ﬁ";s*“]’(z'z@

where .

/A=‘é(4-f‘-o'—7) , (2.25)



and

)=-2 ('Q-%)f , (2.26)

and these last two parameters are always assumed to be evaluated
in the freestream. For a calorically perfect gas, /“;= ¥~ Y2

and '0 =

Substituting from the Bernoulli result (2.15) gives
M% M3 @Y 42 42 242
Q=g,,{l—— —-{F—(gS-d:) (r-:)Mtb }

{3 b (V0 6 )+_M_Q“;2,iz)¢ }oem
CZillJ_ * §S +---}

)

and since

_U{1 + 38 - av4-vE, |

n (2.28)
Y+ g*vEd )
we may write (2.22) as
oL Lp(r oo v - mia{£694p)
_¢‘(¢ PV ¢ m¢'} (2.29)
{(l NME 74* b)- 2—'-’3"—@‘—“% '

+(¢ +YP-vE, (#(vgt )+ (P-I)M‘sé‘) {’)“') kg3 ]=0.

The term involving the entropy jump may be eliminated using (2.23)
to give

[ B+ vb-vE, + L8 98) - b¢ (¢ +v-vE,) Lt}
+ MT{(F M ¢§(Vd’z z) ((F ‘)Mzd’g +'§(V¢1 d’g)) (2.30)
(d)§= +v9-9E,) + 2'—”49‘ l)¢3}_1

_ (W+rmist
CP“(HP‘vi:)”z[ poml -

10



This last equation and that expressing continuity of the potential
across the discontinuity, (2.21), will be used to determine the
locations of any shocks in the flow field, and the jumps in per-
turbation quantities across them.

2.C. Boundary and Initial Conditions

The appropriate boundary condition for inviscid flows is that
the velocity normal to the surface at every point on a physical
body vanish. In addition, we require the initial condition that
all perturbations vanish upstream of the body. (In linearized
theory, this initial condition is applied on the leading Mach cone;
we shall apply it immediately upstream of the leading shock sur-
faces, which are slightly ahead of the leading Mach cone.) These
conditions form a well posed problem for the wave-type equations
with which we shall be dealing.

For planar flows, the wave structure solution is uniformly
valid to the body surface, and the boundary condition may be applied
directly. The mean surface approximation is used, and the conditions
are applied along the line % = O .

For flows about finite bodies, the boundary condition is used to
determine a local solution, which is valid in the vicinity of the
body. The large-distance asymptotic behavior of this solution is then
matched with the small-distance asymptotic behavior of the wave struc-
ture solution to determine the potential in this outer region. Match-
ing of the potential and not merely its radial derivative (which might
be though to be a sufficient condition) is required to completely de-
termine the positions of any shocks in the flow.

2.D. General nature of scaling concepts

The appropriate scaling of variables in the wave structure region,
i.e., that region in which cumulative nonlinearities must be taken in-
to account, may be seen in several ways. For simplicity of exposition,
we will illustrate the arguments only for the case of planar flows.
Similar arguments may be followed for more general flows, but the es-
sential ideas are more easily lost in algebraic complexity. A discus-
sion of the scaling problem for supersonic airfoil theory is also in-
cluded in Van Dyke's book (1965), to which the following paragraphs
owe.

The most physical argument is one based upon the hyperbolic nature
of the equation describing the flow, and the failure of successive
approximations to correct the characteristics to more closely approxi-
mate those of the full nonlinear equation. Since the straightforward
perturbation procedure attempts to correct the solution by expanding
it in a Taylor series about the linearized characteristics, the pro-
cedure will become inaccurate when the distance between the actual
characteristic and the linearized characteristic starting from the
same point on the body becomes of order unity, for then the first
correction is of the same order as the linear approximation. Since
for the plane flow over a slender obstacle of thickness of 0(-) the

11



perturbation in signal velocity (or characteristic velocity) is of
0(-r) and constant 2long the characteristics in the linear solution,
the slope of the exact characteristic is everywhere of 0(—+) differ-
ent from that of the linearized one passing through the same point.
Thus, if we follow the linearized characteristic a distance of 0(1/+)

away - the body, we will arrive at a point in the flow that is of
o[y . rom the point we would have found by following the exact
charac stic. This suggests that if we rescale the lateral vari-
at' o -- e., the one which measures distance along the characteristic

-- ..ch .a1at it is of 0(1) when the physical variable is of 0(1/«),
the equation should rearrange itself to provide an accurate descrip-
tion of this long range, cumulative nonlinearity.

A second argument (which, of course, arrives at the same result)
is more formal in nature, and is seen by observing the nature of the
nonuniformity in the straightforward perturbation solution. For the
planar flow over a bump described by

Yp= Tef (%) | (2.31)

the straightforward expansion gives for the perturbation potential

M5
b= ¢ + ’(ET‘f’. £ (2.32)

the solutions (Van Dyke (1952)):

¢ = —v[’(X—/st , (2.

- i fGpp '+ éfﬁ-a-l)f {f(ﬂ Jut
A P

Now, the solution (2.32) is a uniformly valid asymptotic expansion

N
w
(85
~—

(2.34)

2
as T Q if M‘-BT¢' grows no faster than @, in any region. How-

ever, due to the presence of the third term in the solution (2.34)

for ¢Z , the contribution from the second-order term will be of the

same order as that from the first-order term when ~ Y» . This,

too, suggests that in the region of 0(1/-) distant from the body,
a new scaling of variables is required.

12
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Chapter Three

The Theory of Planar Flows

3.A. Equations and Boundary Conditions

For planar flows, we assume the flow prcoerties to be indepen-
dent of ¥ , and introduce the contracted, semi-characteristic
coordinates

E=E-Y (3.01)

1= B

where

(3.02)

is the fundamental lateral scale factor which forms the basis for
Hayes' (1954) first-order similitude. The new variables, ¥ and

, correspond essentially to a phase and an age variable, re-
spectively, in a geometric analysis of the analogous one-dimensional
unsteady problem. (Or, they may be thought of as the short- and
long-time Variables in a multiple time scale analysis.)

The equatlon_for the perturbation potential (2.19) then becomes

Yot e = p ﬁ‘ 77 2(¢¢r§+¢z¢;v{)

M (3.03)
+ (rl)¢¢ t (o= I)d)cﬁﬂ}
We introduce the expansion for the potential
] Mrg ...
P=¢+ T+, (3.04)
whence we arrive at the hierarchy of equations

+ @ 3.05

¢,§ opPore = O (3.05)

,!_7 (q)o ,§)§ = 7 cé," + 2.(¢.7¢.ﬂ,+ é,flﬁo,?) ' (3.06)
+ 4(/‘-1)¢,f¢.,,1 # (1) Py ogy -
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We note that the first-order equation (for ¢L ) is nonlinear.
In addition to the first term (which is essentially the wave equa-
tion in semi-characteristic coordinates for waves of primarily one
family), there is now a term to allow correction of the character-
istics. This latter term is, of course, absent in the linear theory.
The second-order equation is again linear (as would be the case for
all higher approximations) with nonhomogeneous terms which are known
functions of the first-order solution. The extreme simplicity of
the first-order equation is a major factor in our ability to obtain
useful results.

We expand the shock shape in a manner similar to that for the
potential,

B = Eo(V{)+m,az1"E.(~1)+"', (3.07)

and the shock relations (2.30), (2.21) become

[¢°7+ o: - Eo\?(po;] =0 ) (3.08)

[ u, + E°'l¢°?] =0 ; (3.09)

and

[0+ 2%, Gs~ St +z(¢o;7+z¢, bogy— Eoy Pop,) (3.10)
2 +1) VT'
+§»(¢° 2¢,,,¢7+ /315, QQ‘—Lqﬁ -4 14, T°=0,

L ‘15.,,’ + ?.?¢,¥ +-¥.7¢°;+ E, (¢,¥1 + 2‘.,7;6,,}_;)] =0, (3.11)

where (2.21) has been differentiated along the shock surface to
produce (3.09) and (3.11), and all quantities are evaluated at
the surface E, , in analogy with the mean surface approximation
used for the boundary conditions. The differentiation of (2.21)
has the effect of introducing an arbitrary constant into the ex-
pression for the shock location. This constant is eliminated in
the first-order result by starting the shock at the first point
of characteristic overlap. In the second-order result, (3.11)
is used only to simplify (3.10), and the nondifferentiated form
of (2.21) (eqn. (3.18)) is used to locate the shock.

The first-order shock relations (3.08) and (3.09) may be
combined to give

14
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2] — |
E°7=JZ—-[—$:§:] = ¢o; 5 (3.12)
and
[¢o»l+'li¢o;]= O. (3.13)

The first result states the well known fact that (to first order)
the shock velocity is the mean of the characteristic velocities
on either side of the discontinuity, and the latter may be inter-
preted as stating that the Riemann invariant of right-running
(returning) waves is unchanged in crossing the shock. (See below).
This latter result, combined with the first integral of the first-
order equation (3.05),

¢07+ ‘?_Ld’o; = 70!(7) , (3.14)

and the fact that all perturbations must vanish everywhere up-
stream, gives the relation

L o
¢07 + a§1’¢,§ =0 (3.15)
which will prove most useful in simplifying the second-order
problem.

The second-order equation (3.06), with the use of (3.15) and
(3.05) may be simplified to

Bant (Fogg)y = (- 72+ /A)n, oy - (3.16)

1

The second-order shock relations (3.10) and (3.11) may be
combined to give

[ dythe] = (T G- ) L2

(3.17)
"'( 2_4.@1."' /2)[

where the result

£¢' + E'¢o§ J =0 N (3.18)
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obtainable directly from (2.21), and the identity
. L 3
(= A 1= 30451~ ¢ 4,1 (3.19)

have been used, as well as the simplifications of (3.05) and (3.15).
The identity (3.19) may be derived from (3.09) by multiplying within
the brackets by ¢%I’ and using the fact that

(ecb] = [alb + R [b] , (3.20)

where the bar denotes taking of the mean of the quantity on either
side of the discontinuity. Equation (3.17) essentially gives the
change in the Riemamn invariant for the crossing waves, and (3.18)
will be used to determine K,

The wave structure equations presented here correspond to an
orderly expansion of the characteristic relations for steady, in-
viscid flow. These equations state that

‘;’; dp = 0O (3.21)

along
d
F A CEL PO (3.22)

respectively. In the above form, the relations are valid for a
rotational flow. When expressed in terms of our wave structure
variables, the characteristic equations become

44-27¢ +MT{ Mz_ )¢ FZL¢1}+} =0 (3.23)

MTHETF (‘3**%;/4)"5;* ¢7} oy (3.24)

and
e L 2t M ¢ AT
J{K(¢+ %)- Kg {( 2 2”_)[_¢§ }_ (3.25)
1 —M"¢§¢‘1}—&U{m+m "©
along
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_:!115_1 _é:{_z+ %(2_%1:>¢§+...} _ (3.26)

Thus, the shock relatiomns {3.13) and (3.17) may be interpreted
as giving theé change in the Riemann invariant of the crossing sys-
tem of characteristics. This change is zero to first order, but is
non-zero in the second approximation, due to the inability of the
shock to match perfectly with the conditions in a simple wave. This
locally third-order effect, when followed to large distances from
the body, contributes a cumulative effect of the second order. From
(3.17) and (3.25), the change in the invariant, Q, for the crossing
wave is

M* 43
[@1= (G- g—:ggz + V%) Lo, ] . (3.27)

This quantity will play an important role in the determination of
the location of the rear shock at very large distances from the
airfoil. (See Appendix B).

Since the flow under consideration is two-dimensional, the wave
system is nearly planar not only in the wave structure region, but
near the body surface as well. This fact is manifested mathematic-
ally in the uniform validity of the wave structure solution in the
region of the body surface, with the result that the boundary con-
ditions may be applied directly to the wave structure solution,
without the necessity of introducing an inner (or local) solution.

We consider the shape of the body surface to be described by

Yo = Tk (E) | (3.28)

where‘$(¥)1s the body shape function, and the subscript ( ) refers
to the body surface. Then the appropriate boundary condltlon is
that the streamline slope,

B0 = - v+ M (F 8] tEa ) +o (3.29)

be tangent to the surface at every point on the body.

Since we are considering bodies which lie everywhere near the
mean plane =0 , this condition may be satisfied at the surface
by an approptiate Taylor expansion about values on that plane.
(This is the so-called '"mean-surface approximation.') Thus, sub-
stitution of (3.04) gives
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Ry =~ ) , (3.30)

L
Bp = Flogy =i (Floge + £'¢,) - 2,31 , (3.31)
as the required boundary conditions, to be applied at =0.

To summarize, we here collect the equations, shock relations,
and boundary conditions in their final form for the first-order
problem,

¢o§?+ ¢0§¢of§ =0, (3.05)
C$6.>7 +-zL¢o;] =0 (3.13)
Sy = bor | (3.12)
¢§=—-P'(}:) ’ on y= o ; (3.30)

and for the second-order problem,

Tyt (i), = (Tt bRp) By (5.16)
[y oty T (-F+ G- A)LA3T ¢ (¢ - LoD T a7)
E = "LQS']/[%J , (3.18)

¢:§ s'r MZ( beg -F”Q%,) 2/31?5““ y= =0, (3.31)
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3.B. General solution

The first-order equation (3.05) has characteristics described
by .

d
b=

along which ¢L,is constant. Thus, the characteristics are straight
lines in the §- plane. The value of $og on a particular char-
acteristic is determined from the value of f' at the value of g
corresponding to Y =O. We denote this value of E as ¥,

Thus the solution may be written

£ (3.32)

¢°; = "’(1/(5&) , (3.33)
where

Eb—‘s—szf;s‘,) = O (3.34)

determines ¥, implicitly. This is equivalent to Whitham's result,
which states that the linear solution is correct even at large dis-
tances from the body if the linearized characteristics are replaced
by the exact ones (or at least by ones accurate to first order).
The above result reduces to the linear result near the body (i.e.,
for small 4 ), where ¥, approaches X and the linearized and
first-order characteristics are indistinguishable.

If we are interested in the actual value of the potential, we
hav9

, 2
¢o= -f(=) + ‘aL‘?p(F‘,) R (3.35)

where the relation (3.13) has been used to eliminate the arbitrary

function of arising from the integration. The locations of

any shocks which may appear in the flow are then determined by in-

tegrating (3.12) in any region where the characteristics overlap

in the physical plane, starting at the point where any such overlap
first occurs.

The second-order equation has the same characteristics as the
first-order equation, and along these the homogeneous part of the
second-order potential is constant. Integrating the second-order
equation (3.16) once with respect to E yields

G * oy = (-?s*g,%':~/4§)¢of+ sep (3.36)
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where S(W) is an, as yet, arbitrary function, introduced by the in-
tegration. Since the velocity perturbations must vanish everywhere
ahead of the leading shock, $(®) must be identically zero in that
region. Indeed, since it is a function only of % , it would have
to be zero everywhere were it not for the fact that it can be in-
cremented at shocks. This is seen from the shock relation (3.17),
which states

[¢,74 ¢°§'¢'§‘] = (--Gz» '#)[Qg,] (G 249! IZ) £¢o§ . (3-‘17)

Thus, while the function S() cannot depend upon X in any inviscid
reglon it must be allowed to increase by

(Z-ZTPI‘* |z) [¢o-§]3.

at each shock wave in the flow field. The quantity

By * o g

is related to the Riemann invariant of the wave family crossing the

shock, and the amount by which it changes is a measure of the de-

parture of the wave system under consideration from a simple one.
Thus, the equations (3.36) and (3.17), by comparison require

¢ t+ 4, (25 ‘Z FM )¢ +( 24Pz /2)Z[¢o!] (3.37)

where the summation is over all shocks upstream of the point of
consideration at any value of

Now, the first-order solution, ¢Zr , is a function only of ¥,
whence

2 '3 2
¢,7 (Fe,7)= (’GZ‘%J%)'F’E&ZJ + ("g +££'1:. ,-;)_)Z[:F(;,_)] (3.38)
and
2 i 13
4G, p= (%"Egv‘z%)ﬁ(';j) * (—é+z4’%"§-?£/§[rldsz+h(s.),(s.39)

where h({)is a function of integration to be determined by the
boundary condition.
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Differentiating the solution with respect to ¥ , and evaluating
it at Vl = O, we have

9 (3,0 = h'(s) | (3.40)
whence the boundary condition (3.31) requires -
'z
h(gb) = ""Ff +M2.(‘p'F"+ ‘("2-)- ZFZ ) (3.41)

and we have, finally,

2 3
¢(§,7)=(?7'%‘”%)7’(&d * ('E’L-fa%;:‘— ’1’*)_)/’;[’0,13"[ (3.42)
"“f (H Fa(F £ - L) dm

This gives the comFlete second-order potential in terms of the body
shape function, !1), in the first-order characteristic coordinate
system ( Eyg, ) which is known from the first-order solution.

The second-order correction to the shapes of shocks in the flow
is then obtained by evaluating ¢ and ¢ along the first-order
curve, amd using

E = ’[(é'J/[(éo!] . (3.18)

The uniform validity of the solution may now be seen from a
comparison of the general solutions for the first- and second-
order problems. We thus have for large distances that

g, ~ -5 (3.43)

)

while

ME L2
~ (—%'f I';?_-/«)F(s‘) . (3.44)

Thus the ratio of second-order perturbation quantities to those of
first order  along any characteristic is

Mrg 2 : (3.45)
-%75 ~ Be(#- % )G
%%
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which approaches zero uniformly as T-= O.

3.C. Sample sodution

The general form of the wave structure solution for planar
flows is presented in the previous section, and the complete solu-
tion may be constructed once the body shape function, (%), is
known. This has been done in Appendix B for the particularly
simple example of a symmetric, circular-arc airfoil at zero angle
of attack, and some particular features of the solution will now
be presented.

Since the flow will be symmetric about the chord-line of the
section, only the flow in the upper half-plane is considered.
Thus, we consider the shape function to be given by

4YEL) = O ) .Eb <-t )
2
= l_—%&. kb <E < Hh (3.46)
= O N }2. < E, .

The first-order solution, far from the airfoil (i.e., in the
limit of large‘7 ) is then

.
N
¢°;: ‘7 (3.47)
in the region between the shocks described by
B, ~ IV7 S (3.48)

and is zero elsewhere (i.e., upstream and downstream of the lead-
ing and trailing shocks, respectively).
The second-order solution between the shocks behaves, for

large 11 , as
™% 2
B~ (Z+zpp) S +'zl'("’/€1z)il[‘ , (3.49)
while the shocks are displaced by an amount

- : rM?
K, = E’t ~ ”'c’:( —‘:h?_v)ﬁ ) (3.50)
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The dominant second-order effect at large distances is a dis-
placement of the shock wave which strengthens the leading wave and
weakens the trailing wave. These results agree with those of
Friedrichs (1948) when our analysis is specialized to the case of
a calorically perfect gas, and his expression for the shock slope
is corrected as noted by Lighthill (1954).

Behind the trailing shock, the analysis gives as the poten-
tial

¢ (4 /"M" _2.1)

[M* J
3Pz. 1*4\? —( 2 )

3T (3.51)

which is a function of " alone, whence the pressure perturbations
are of third order in this region. But the form of (3.51) suggests
that there is a right-running wave that is locally of third order,
but has a cumulative effect of the second order, and hence must be
included in the analysis. This effect was first noted by Lighthill
(1954), and must be accounted for if certain global integrals re-
lating to 1ift and drag are to be correct to second order (See
Appendix C). This wave eventually interacts with the trailing shock
below the airfoil (or is "reflected" and interacts with the trailing
shock above the airfoil in our symmetric case), and alters its po-
sition to second order. This interaction takes place only very far
from the body, and we introduce for this '"Lighthill region'" the new
scaling

¥=Kx,
~ LA
- E

Since entropy and pressure perturbations are of the same order behind
the shocks near the airfoil, the strength of this wave must be deter-
mined using the roational method of characteristics. 1In the region
of interaction with the trailing shock (3.52), however, the entropy
perturbations are again negligible, and the potential behind the
trailing shock is

(3.52)

(L, e 2Y -
??- (3ke 3% 3 )4/+z 3(M=“/) R (3.53)
and the second-order shock displacement is

Mt 2vJy__1 4 M
= {(3”2‘ 3/31"‘ 3 )J/_.FZ_YT{ _‘gMz"'#a."l)} , (3.54)

which at very, very great distances from the airfoil (i.e., for
large ;7 ), approaches .
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E ~ (3»1“ 5,3’3 1)) . (3.55)

This result differs slightly from that of Lighthill (1954) for
the position of the trailing shock, which is in error. (See Appen-
dix B).

3.D. Structure of Shock Origin

Since the characteristics are not revised in our second-order
approximation, we cannot hope for the theory to give detailed infor-
mation about the wave structure near the origin of a shock within
the flow field. The theory does approximate such local behavior in
a global sense, however, and gives a second-order displacement of
the point of formation which corresponds to the axial displacement
of the continuation of the shock shape valid away from the point of
formation, to the same lateral position as the first-order shock was
first formed. This is illustrated in Appendix D, where the geometry
of the true characteristics is investigated in the neighborhood of
such a point.

A shock is formed in the flow field when characteristics coming
from different points on the boundary data first cross. The shock
then forms a barrier which the characteristics are not allowed to
cross, thus rendering the solution unique in regions where the over-
lapping characteristics would otherwise have caused the solution to
be multivalued. The case examined in Appendix D is that of the shock
formed in the planar flow over a step formed by first a compressive,
then an expansive, arc of a parabola. The geometry and first-order
characteristics are shown in Figure 3.01. The first-order theory
predicts a shock to be formed with finite strength at (O,EL), up-
stream of which the flow is undisturbed, and downstream of which
the solution from points on the body for which ¥y> ! is valid. The
second-order theory then predicts the shock to originate at the
slightly displaced point,

E‘Mr;EVZ) = M{TT(Z"’M‘L —3%' —é‘%)
1=z

To interpret this in terms of local structure, we must look
at the geometry of the actual characteristics in the region near
the point of formation. When second-order effects are included in
the characteristic relations, the characteristics coming from the
forward part of the body 0 < B < 1 form an envelope described
parametrically by

(3.56)

3 2FM
E___M'r(C*\- M~ fal /«)EL) (3.57)

= "’z_+M—T(Q+ 2"""+2/««)E5.
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Figure 3.01: Geometry of Shock Origin Problem.

When the coefficient,

3 kR
¥ = Q+ﬁ7_—2———;2_4+2/,\ ; (3.58)

is positive, the envelope appears as in Figure 3.02, and a shock is
formed to intercept the characteristics before the envelope is formed.
The shock begins with zero strength and the flow is undisturbed ghead
of the shock. Beyond the point corresponding to ¥y=1, the shock is
determined by the appropriate relations between the free-stream char-
acteristics and those coming from the expansive part of the body

( Ee.>1! ), as in the regular second-order theory. If this slope is
continued back to 17::&&, the shift in virtual origin is exactly

K, = X = ¥, , (3.59)
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whence, the second-order theory is correct in this global sense.

shack 11

MZr
--b42 *——75—

\ continuation
\ / of shock

envelope \ virtual
\

origin
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\\
/21
characteristics —]
&
T X O pTE-V E

Figure 3.02: Structure of Shock Origin ( X>0).

When the coefficient, W , is negative, the envelope appears
as in Figure 3.03. The shock begins with zero strength and its
early development occurs with disturbed flow on both sides. Since
the shock is now formed for g < 4> , the virtual origin at 1?:*2.
is merely the value of ¥y, at that point. It is

E =3X = E, (3.60)

v )

again showing the second-order theory to be globally correct.

When the coefficint, W , is zero, the shock again, as in
the first-order theory, starts at the point ( C),%i), and the
predicted second-order displacement is zero.
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Figure 3.03: Structure of Shock Origin (W< Q).
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Chapter Four

The Theory for Finite Systems

4.A. Introduction

The study of planar flows, while interesting pedagogically, is
of little practical value, since any body we are likely to conceive
for supersonic flight will most certainly not look two-dimensional
from the large distances with which we are primarily concerned. Thus,
it is important that we should consider the problem of wave structure
for flows about bodies which are of finite extent (and, perhaps, look
somewhat like real airplanes).

The easiest problems of this type to analyze are those of axially
symmetric flows, since these may still be described with only two in-
dependent variables. The consideration of axially symmetric flows is
important for another reason, however, and this is because they hold
the key to description of the wave structure for flows about more gen-
eral bodies. This is suggested by the result of Hayes (1947) that,
for finite planar systems, the perturbations in any azimuthal plane
look, to first order, like those from some equivalent body of revo-
lution, if the observer is sufficiently distant from the system.

(This is the so-called supersonic "area rule", first used for cal-
culating wave drags). A similar result may be obtained for bodies
whose every lateral dimension is small (slender bodies), with the
additional simplification that the "equivalent'" body of revolution

is the same in all azimuthal planes. Thus, since a general body may

be thought to be made up of suitably arranged slender and planar bodies,
the result holds for quite general finite bodies.

Now these results are based upon the large-distance asymptotic
behavior of the local (straightforward perturbation) solution -- and
this is exactly what is used to provide the inner boundary condition
on the wave structure solution. Thus, the first-order wave structure
depends upon the azimuthal angle only as a parameter, which enters by
matching with the local solution in the appropriate plane (Hayes (1954)).
We shall refer to this property as quasi-axisymmetry.

This property suggests that the appropriate coordinate system in
which to study the wave systems for finite bodies is a cylindrical one,
aligned with the freestream. Thus, the equations for the wave structure
are expressed in a cylindrical coordinate system, with the lateral (or
radial) coordinate properly contracted to allow consideration of cumu-
lative nonlinearities. The inner boundary condition is then provided
by asymptotic matching with the local solution.

We are hampered in this sense by a lack of local second-order so-
lutions of any generality. Only for flows over bodies of revolution
does a reasonably complete second-order theory exist. Thus, we shall
consider in detail the matching for these flows, and then briefly dis-
cuss the nature of problems encountered for flows about non-axisymmetric
and planar bodies.
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Finally, it will be seen that the local second-order solution
determines only a one-and-one-half-order solution in the wave struc-
ture region. The third-order local solution is required to deter-
mine the second-order wave structure solution. Third-order local
solutions can be obtained only for the simplest conical geometries
at the present time.

4:B;_“§gpations and Shock Relations

The quasi-axisymmetry of the first-order wave structure sug-
gests the coordinate system

= E-%,
Y = 2KV=
e =7&—n"(§/7))

for description of the wave systems emanating from finite systems.
It is essentially a cylindrical coordinate system, aligned with
the freestream, with the radial coordinate contracted to allow
consideration of cumulative nonlinear effects. We introduce the
reduced potential

RV, (4.01)

L=vR ¢ , (4.02)

~

which automatically accounts for the geometric attenuation of cylin-
drical waves, and is of order unity throughout the wave structure
region.

Thus, the potential-equation becomes

%

% 1 JITM5
0t B ~ K I{F‘ Yoy + 2(% f‘("y‘zlfr;)

R AT A (4.0)
= (Wt D ¢ %’31‘7%(‘/*¢%9)}+-".

We introduce the expansion for the potential

2 2
tp=%*%‘§b}z+ K%’U; + e (4.04)

(where the ‘51 term is included to satisfy the matching require-
ment with the local second-order solution) and arrive at the set
of equations
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= O .
%!7 * Yopogy ? 10

¥ I (Yorty )y = ©, (400

o+ [TM7, .
Hog * Ol = ¥ (= g 2 gy gty
+ 0% ey, + (D% Y

(4.07)

2 °F '°r s F¥
(Wl )+ S (K4 ) |
S
—;%"u"fu"ti '

Similarly, the shock relations (2.30) and (2.21), when trans-
formed as above, with the introduction of

v 2
50p0= B+ T 0 + B g oo+, (08)

become
2 =
Ewo‘[ + 'Lpog - .E"'(u"t ] O . (4.09)
Lq’o.l+ E“‘\\l,o{] = O’ (4.10)
and
~xl + Y, +2% Y, - -
[ ‘V\ rL"' yl‘\ o‘qyl‘ Eo,‘uk; Ey”lq’c! . (4. ll)
- o~ =
Ero (Boqbogg Yoy~ 2 Yaglhge* )] = 0,
[_—‘VI(“)'L-%\- .Ey;q’.¥"' q’&v‘ + !o.l.q';i‘ (4 * 12)

+ Er,_.l\k,! + %y, (‘K,“,l* To.‘“’o“ﬂ =0;
and
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[ \‘l“'\ + u.,‘*Z‘l'otll'.“ Ibs‘u'lt = 'E..(‘l»o! = .§, (!on‘l’oxg
“ Yoy A g 2 Voglogy ) - #1" T, (%, u,, + B Yy,

“U, kY, - ]

’?.';-1 ‘vl.q’ytg Zu‘i u ) %"frt (Z\l nn (4.13)
- 14.“1 (‘ u;;tt! u’o;‘ + Z.s“lq'o‘lf) "'l(zu‘
"5-1LL ﬁgl ;05_ q’ nwﬁii-e;Vb'

B E) ”“(\hl; . % 1= Bk O,

ol L
Caph it Sy o UM

+ ¥, (Y, on Yo 5. (% -3y, -

( !‘1+§ ;)f ™ l"z( "t.t\l "‘q"i! (4.14)

* g*vl%ts K ?(,,ll}& )t T—'tev'\t £, (£ Yo

+t? u"f! Zvl“’b“) + ‘fei\?’ivlq'& ] O

where (2.21) has been differentiated along the shock surface, and
all quantities have been evaluated on the first-order shock surface,
=5, , by a mean-surface approximation.

The first-order relations, (4.09) and (4.10) may be combined
to give

[%oy + Tyl = O, (4.15)
and
[U’o ]
E"‘l L '(I, , (4.16)

where V%, is the mean of be on either side of the surface. This
latter relationship is recognized as the bisector law, while the
former may be combined with the first integral of the equation of
motion (4.05) to give

%,741-%; =0

(4.17)
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everywhere in the flow field, in analogy with the planar result,
This relation will again be extremely useful in simplifying the
second-order problem.

The one-and-one-half-order shock relations (4.11) and (4.12)
may be combined to give

[q"r.,_.l“' 'k,;\l*,,z! =0 ) (4.18)
where the result
(Y, + €. % el = o, (4.19)

obtainable directly from (2.21) and the fact that %k_satisfies
(4.06) have been used. The former result, (4.18), combined with
the first integral of (4.06) give the one-and-one-half-order
analogue of (4.17):

¥ %flp}'?,f = O s (4.20)

ey

everywhere in the flow field.
Combining the two second-order shock relations yeilds

[wn.z""%! 'vl( 3t 33 1‘%)[‘1'3]

(4.21)
2 Us- |z/3z+ ) [y 1™ 3 [elh 1
4FM{L
_% (_-q"i_;'] P \13 oe 09]
where the result
[q’, + E"q’of + ﬁ;(a,quylf + "z‘_' E’:-qofg)] = QO (4.22)

has been used, as well as (4.05), (4.06), (4.17) and the result
R 3. 2 3
'E..(DP.:] = "% f_“’og] + 3[‘4'0} ]. (4.23)

The result (4.17) may be used to simplify the second-order
equation to the form
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Vigy* (gigdy = (-7+ B T
TL 2 (W + Yo Yo )
T

(Wt 4t,,) - = w (4.24)

rmL ey

For convenience, we here summarize the equations and shock
relations in final form for the first-order problem:

-¢o¥1+ y’ofuo;!.'= O, . (4.05)
[zk,? + £+ zh;- ]= O, (4.15)
Eov[ = \bo}_ ; (4.16)

for the one-and-one-half-order problem:

~

%i;? t (W )y = O, (4.06)
[U’rul* Votu&t] = O (4.18)
Ty, = Eq"-]/tq,%] 3 | (4.25)

and for the second-order problem:

'r7 (Yo thedy = (7“/3 /‘\)_L%t%!? Nk *W;Q
+F; -.,]3(11’ +4i,’ow) #1.“’&, ‘Ef N

N S S I T (Rl

TB}JI@] Zﬁ’tm’%] 4!;:’-? (E%ed,

(4.24)
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E, =-[“L;][%+7~%Z(Eﬁ,,_r+z’-z;:¢a,f) 1. (4.26)

It is of interest to note that as the wave propagates away
from the body, geometric effects and wave interaction effects re-
main of comparable magnitude in the second-order equation. This
is seen from the fact that, at large distances, the wave region
will be approximately parabolic in the ¥-¥ plane; i.e., M will
scale as the square of § . (This is because the characteristics
are straight lines in the ®-v plane, and at large distances the
body appears as a point. Thus the shocks, which define the wave
extent, are approximately the bisectors of a centered fan and
parallel lines (the freestream characteristics); they are there-
fore nearly parabolic.) Thus the term

R T 2
~ 'v\ °§W°Ef

which arises from the wave interaction, must remain of the same
order of magnitude as the term arising from the changing geometry,

N;‘J,l-,s(qfo+4¢,ee) )
Thus, at even very large distances from the body, second-order

wave structure effects are never dominated by the geometry, and
both effects must be considered.

4.C. General Solution

The first-order solution is almost completely analogous to
that in the planar case. The equation (4.05) has characteristics

in any azimuthal plane, © , given by

d
q%) =%E ) (4.27)

along which U; is constant, whence they are straight lines in
the azimuthal ¥-y plane. (Due to the fact that ~ VR, how-
ever, they will no longer be straight in the physical plane, but,
rather, parabolic.) Thus we will again have

. {
Yog = — F(£,;0) (4.28)

)
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-where
Eu‘f-"(F_'(Ea.;e) =0, (4.29)

and F(s,; @) is a function to be determined by matching with
the first-order local solution in the appropriate azimuthal plane.
The potential is then given by

2
V(e p;0) = - FlR;0) + £ F G 0) (4.30)

Shocks are inserted exactly as in the planar case, by integrating
(4.16) in regions of overlap of characteristics in the E-% plane.
The azimuthal angle, @& , thus enters the first-order solu-
tion only as a parameter, and the wave structure in any azimuthal
plane is the same as that for some equivalent body of revolution.
This equivalent body is defined by matching with the local solu-
tion in the azimuthal plane of interest.
The one-and-one-half-order equation has the same characteristics
(4.27), and the potential, VﬁL , is constant along these. The
equation may be written

%17(55)7) =0, (4.31)

where the arbitrary function of integration has been set to zero
by (4.18) and the application of the initial condition. Thus, .

=~ G(E,; ©) ) (4.32)

where C$(E.;E§) is to be determined by matching with the local
second-order solution. The correction to the first-order shock
shape is given by (4.25).

Again, as in the first-order solution, the azimuthal angle
enters only as a parameter, and determines the plane in which the
matching is to be done to determine G(¥.;0).

The characteristics of the second-order equation are again
given by (4.27), and the homogeneous part of the solution is con-
stant along them. Integration of the equation (4.24) with respect
to ¥ gives.

7 ( ég*'—Af Té?) ‘ >
P“]'((JIP+4—'¢ )dE - 5&-,}!’,;-{- s(»«[) ;
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where the shock relation (4.21) determines

T
S = %_—v'r(-é-- %14-%)[(‘)0!]3’ (4.34)

and the summation is again over all upstream shocks at any value
of‘q . Thus, the first integral may be written

¥, mns0= #- zlgz‘f—#)—LF(;he) H(E2) 5
{11 j(F+4 e)dﬁ.fz 1J(F +4—(r") )d } (4.35)

f_ (( ,VlFu)'L ( 3 \2’3‘2- G)_"Il-ZLF|]?

which may be integrated to give

V(F"T e = (3 zpz*%)”tﬁ, e)ﬂml + (2- ’};4‘ "11"' N
zF"{”\ kﬁ “)AEB*—J(F‘+4(F'Z) JE} (4.36)

TN ST

The funétion (4(5;;9) is to be determined by matching with the
third-order local solution.
The second-order correction to the shock shape is given by

! 2
Tl [% + !-%’-(E&,q’&f + 25 Vo). (4.26)

The azimuthal angle enters the second-order solution paramet-
rically in the determination of fﬂﬁﬁeL and also through the
dependence of F and G upon 6 in the particular integral
terms of the solution,

The uniform validity of the finite-body solution at large
distances from the body may be seen from a comparison of the orders
of magnitude of the various terms as we follow any characteristic
to infinity. Thus, for large distances, the first-order solution
gives

Y ~ ~F(x,; ) (4.37)

)
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while the one-and-one-half-order solution gives

U o~ G'(%; ©)

—_— 4.38.
’i} "z FM(E_‘”_ e) ) ( )

and the second-order solution gives

F A
%rN &—7 F"(g-,,,-e) . (4.39)

ki

Thus, it is seen that, in the limit as P-= (¢, the one-and-one-
half-order and second-order contributions to the solution are always
small compared to that of the first-order solution. Unlike the
planar case, the higher-order solutions actually become small com-
pared to the first-order solution at large distances (by a ratio of
approximately the inverse square root of the distance from the body).
Note also that the second-order solution grows logarithmically com-
pared to the one-and-one-half-order solution. Thus, in a rigorous
sense, the true second-order solution must be included whenever the
one-and-one-half-order solution is, although in practical cases,
logarithmic terms may usually be considered to be of order unity.

The wave structure solution is not, however, uniformly valid
for small Y . This may be seen from the equation for the second-
order potential (4.24) which has nonhomogeneous terms in reciprocal
powers oKk % which will become large for small values of Y . Or,
more directly, the nonuniformity may be seen by comparing the second-
order solution (4.36) with the first-order solution (4.30). This
comparison shows that the second-order contribution to the potential
will be of the same order as that of the first-order solution when

17 = C)(T) ,
or, equivalently,

x=0(1),

Thus, in the region A = 0(1), a separate expansion must be carried
out, and the solution of this problem matched with that of the wave
structure problem. The solution in this region is, of course, the
classical, "'straightforward perturbation' solution.

The reverse of the above procedure, i.e., an examination of
the nonuniformity of the local (straightforward perturbation solution),
is exactly what led to our choice of the contraction of radial co-
ordinate to be used in the wave structure region scaling (as was done
in Section 2.D. for the planar flow case).
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4.D. Matching with Local Solution

In order to see how the functions F(E‘; 6) , G(Q,‘O) , and
H(%,;0) are determined, it is necessary to look at the local so-
lution in some detail. The simplest problem which illustrates the
nature of the matching involved is that of the flow over an axi-
symmetric disturbance on an infinite cylinder, aligned to the free-
stream. Thus, if the body surface is described by

Ny= Ry + -rcap(x/a R (4.40)
the perturbation potential, expressed as
M3
=0 +7¢+ " (4.41)
(- F 7 )
is determined to be
&b = 07'(2) J;\
D = ( ) (4.42)
and
F-r
A /2 _ (4.43)

A S

The source functions, E?Cﬂ and A4kh)are determined by the first- and
second-order. boundary conditions
?'Eo /
Ea)F @2 — pl— :
f {(E2) (L; = 7FE (4.44)
Y(E-2)%-

-7,
ENnA)Hh _ [ @
- -ELE(Q ¢"+ ‘p¢0_ﬁi) (4.45)

- - 72 _ )
74 (b bl
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(See Van Dyke (1952)). The local solution is completely determined
once these Volterra integral equations are solved for () and AQ) .
This solution may then be used to determine the wave structure solu-
tion by the matching principle of Lagerstrom which (following Van
Dyke (1964)) states that

the m-term inner expansion of (the n-term outer
expansion) = the n-term outer expansion of
(the m-term inner expansion).

We will here carry the matching only to terms of second order
in the local solution (one-and-one-half-order in the wave structure
solution), since the third-order local solution is not known. Thus,
the one-and-one-half-order outer expansion of the second-order inner
solution is

(/S) tsot d ’g_g’ )42
(%) %IK! Flom ((;_) - K{f Vo=
_ 2B MP (Y dr ).
K / 2GS 06,

where a subscript in parentheses indicates the complete solution
for the potential to the order indicated, and the subscript on the
parentheses indicates the region in which the solution is valid.
Thus, e.g., the subscript (1); signifies the solution in the inner
(or local) region, up to and including terms of second order in that
region.

The one-and-one-half-order wave structure solution, expanded
to terms of second order in the local region is then

(%)

Expressing (4.47) in terms of the wave structure variables for com-
parison with (4.46) gives

(4.46)

(% {—T’:{- F(® - Kﬁf-"&) - %’”G(ﬂ*--- } (4.47)

); &
(¢(&)(1 __Z_KF‘_K'F'_Q_%Z.G.;..., (4.48)

1 1

whence the matching requires

F(Eg) j : J 2 > (4.49)

Z-(?h )
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Q(x) = j M (4.50)

2(x3)

Note, in particular, that the local second-order solution de-
termines only the one-and-one-half-order solution in the wave struc-
ture region. To determine the second-order wave structure, we would
require the local solution to third order, the homogeneous part of
which would contribute a term like

¥
_2E M5 Heda

(4.51)
1 8 ] {2
in (4.46), which would match with a term like
M%2
- 2K =% H(E) (4.52)

7R

in (4.48) to determine the homogeneous term in the second-order
solution (4.36).

4.E. "General Finite Bodies

The treatment of flows about more general finite bodies is
severely limited by the lack of a sufficiently general second-order
local theory. This is primarily a result of the inability to find
a complete particular integral for the nonhomogeneous terms of the
equation when non-axisymmetric terms are included. However, a few
general remarks may be made about these flows.

a. Quasi-cylindrical flows

For the flow over a nearly axisymmetric perturbation on an in-
finite cylinder aligned with the flow, it is useful to think of the
body surface as described by a Fourier series. To illustrate, we
will consider only the first term (e.g., the dipole) of such a series,
though all terms are of equal importance in determining the wave
structure, since higher-order moments do not decay as in the slender
body case (see following section). Thus the body is assumed to be
described by

o= %+ 1R { (D + R(®w0] . (4.53)
The first-order solution will then be of the form
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where 21-.(» and 34,(70 are related to the shape functions E(%'Q and
£ by Volterra integral equations through the boundary condition,
which may be applied at 7, The second-order local solution will

have a similar form for the homogeneous terms, plus particular inte-
grals of the nonhomogeneous terms which we are unable to calculate:

- EZJT(A)J A
1 o]’(‘f— AY-A2 £n
_ 00395 {f“ﬂ'f\)(_f‘ﬂt-ﬁ"_‘_ i } »Mz(\)‘l"t (4.55)

n k 2P J(f‘h)"—l—tl f(g_ )'—_ﬁt
+( Far‘fiu&ar " tejrat terms ).

(4.54)

Matching this with the wave structure solution results in

E
F(x.-0) =§ ORI EAOP (4.56)
R Y253 ’

and

(4.57)

", () 5 2 cas© A ()
G(s.. 0 =J. 1) 7 ST I
(5.;0) ) T 2

The second-order source functions,éi())and.kﬁﬂn)cannot be deter-
mined, however, since the complete particular integral (to be
used in applying the boundary conditions) is not known. The second-
order outer behavior of the first-order local solution matches appro-
priately with the inner behavior of the wave structure solution, but
the check cannot be made for the nonhomogeneous terms of the second-
order local solution.

As in the axially symmetric case, the local third-order solution
is required to determine the wave structure solution to second order.

b. Slender body flows

For flows over bodies whose every cross-stream dimension is
small, the following redefinitions are useful. We define the slender-
body perturbation potential
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W=-7793¢ , (4.58)

and the new parameter

rmép2
ﬁl )

K.

s (4.59)

(=
whence, with the expansion

Y=Y +M7*Y +-.. (4.60°

3

the equations of Section 4.B. again describe the wave structure
when ¢ is everywhere replaced by ¥ and K is replaced by

B -

s(In this case, an additional scaling region must be consid-
ered within the local region, in the immediate vicinity of the
body. In this slender-body region, radial velocity perturbations
are large compared with axial ones. The solution in this region
must then be matched with the local solution, which in turn pro-
vides the inner boundary condition for the wave structure solution.
The first-order slender-body solution is a harmonic function in
the cross plane, plus an additive function of the axial variable.
Thus, non-axisymmetric terms decay rapidly, and the first-order
local solution is axisymmetric. The slender-body dipole distri-
bution contributes to the second-order local solution. Since
the first-order local solution is axisymmetric, none of the diffi-
culties of the preceding (quasi-cylindrical) section appear, and
the wave structure solution, in principle, may be determined (to
one-and-one-half order). The slender-body quadripole distribution,
as well as particular integral terms arising from the non-axisym-
metry of the local second-order solution will entexr into the third-
order local solution, which is needed to determine the second-order
wave structure solution.

c. Finite planar systems

For flows over finite planar bodies, the local theory exists
only to first order (Hayes (1947)). The so-called "area rule" is
a large-distance local theory -- which is exactly what we need for
matching with the wave structure solution. It is based upon the
fact that the disturbance at a point far from a finite planar body
is primarily due to sources near the intersection of the forward
Mach cone from the point of interest and the planar body, and that
this region may be shrunk to a point, as viewed from the distant
point of interest.
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For the thickness, or symmetrical, solution, we need consider
only volume sources, and the first-order disturbance potential at
a point (E’ﬁ)f) , is of the form

¢ = _‘/ (%) dx, dxe (4.61)
> adVEEGo-

where the integration is carried out over the region upstream of

the intersection of the forward Mach cone from the point of inter-
est and the plane of the body (assumed to be &= © ), and S is
proportional to the local downwash due to the thickness distribution.
The one-term wave structure expansion of this integral may be easily
shown to be

' x
(o), ydx'!
(¢(o)_> ~ - 2K _if&’)_"/_ , (4.62)
¢ 14 Ye2(Ea)
where
A =X - X w6 (4.63)
and

57'5(11) =/&Zﬁ (V! x)dxe - (4.64)

Thus, we note that at large distances, the perturbation potential
from a planar distribution of sources is identical to_that of an
equivalent axisymmetric distribution, given by E;&(k') . Note that
??{(AQ will depend upon the azimuthal angle, & , through the
definition of 1A' .

Similarly, for the lifting problem, the potential due to a

distribution of elementary horseshoe vortices may be represented

é =ﬂ?(f"")§c (x, %) %, Ix2 ) (4.65)
°_{)_ {(‘7"‘;)""‘ f"} \/(f""f,)l— (7")(3)7'— T .

where :5ﬁ is proportional to the local 1lift coefficient. In the
wave structure region this takes the form

¥ .
@, _ azf sm® KO (4.66)
(%) VN EY
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In this case, the azimuthal angle enters not only in describing the
cuts across which the integration will be carried out, but explicitly
in the integrand.

Again, the second-order local problem cannot be solved due to
the lack of a complete particular integral, but it may be noted that
the homogeneous potential will also be of the form (4.61) or (4.65)
and will, in the matching with the wave structure solution determine
the one-and-one-half-order solution Q(ﬁ;e)‘

4.F. Lighthill region

The broad third-order wave found in the planar case behind the
trailing shocks also exists in the finite body case, with a cumulative
effect of second order. The wave in this case is even broader in the
physical space, and the Lighthill region defined by

A~ 2
£E=4KE (4.67)
e RS

corresponds to

x=0") (4.68)

in the physical plane. The strength of the wave cannot be deter-
mined as it was in the planar case, however, due to the fact that
the geometry now enters the characteristic equations, precluding
direct integration. The strength might be determined for specific
examples, but the great distance at which the interaction with the
rear shock wave occurs justifies, in some sense, its neglect.
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Chapter Five

Summary and Concluding Remarks

A second-order perturbation theory for the inviscid, supersonic
flow of a general fluid past a body has been presented, with partic-
ular emphasis on the behavior of the wave systems at large distances
from the body.

The theory justifies confidence in the first-order theory (which
is a standard tool in all sonic boom work), by showing that it is the
first term in an asymptotic approximation scheme, valid in the limit
of vanishing body thickness, and gives additional insight into the
nature of that approximation. The theory also provides increased nu-
merical accuracy for flows about bodies of finite thickness in the
examples calculated, provided the disturbances are not too large.

The theory of planar flows generally confirms the results of
Friedrichs (1948), as corrected and extended by Lighthill (1954). An
error is pointed out in the latter work, wherein the position of the
rear shock at very great distances is incorrectly given. It is also
demonstrated that for shocks originating within the flow field, the
predicted second-order shift in point of origin corresponds to the
shift in virtual origin necessary to account for the local structure
near that point (which structure the present theory does not predict).

The theory of flows about finite systems is essentially new. Of
particular importance is the fact that the local solution (i.e., that
valid ne2r the body, where the cylindrical nature of the waves is
essential) must be known to third order to determine the second-order
wave structure solution. An intermediate, homogeneous solution (termed
of one-and-one-half order) is determined from matching with the local
second-order solution. Numerical results from the calculation of the
shock position in a conical flow indicate that appreciable increase in
numerical accuracy is obtained only when the full second-order solution
is calculated. The one-and-one-half-order solution offers little im-
provement over the first-order theory.

The wave structure theory, as presented, is essentially complete
for the large distance behavior of these systems. Extension of the
theory to third order would probably not be worthwhile. Such a theory
would not necessarily give increased numerical accuracy even if its
algebraic hurdles could be overcome, and the essential nature of the
higher approximations is illustrated in the second-order theory.

The most useful avenue for further study is consideration of the
second approximation for non-axisymmetric bodies in the local region.
Only the outer asymptotic behavior of this solution is required to
determine the corresponding wave structure. Determination of the local
third-order solution is probably not feasible.
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Appendix A

The Existence of a Velocity Potential

An irrotational vector field, i.e., one having zero curl, may
be described as everywhere the gradient of a single scalar function,
called the potential. The irrotationality of the field is a neces-
sary and sufficient condition for the existence of such a potential.
We will now investigate the conditions under which the velocity field
in our particular problem is irrotational.

Since we assume the flow to be inviscid and initially uniform
(and hence irrotational), vorticity may be generated within the flow
field only at curved shocks, where entropy gradients are incurred.
The vorticity is related to these entropy gradients for a homocom-
positional, inviscid flow by the Crocco-Vaszonyi theorem

gxT = -TwS +vH (A-01)
where

—t

T = \Vx? (A.02)

is the vorticity. Thus, for our homoenergetic flow, the magnitude
of the vorticity may be estimated by

T vS
=~ —Ui- , (A.03)

which, using our quantitative expression for the entropy jump at
weak shock waves, (2.23), becomes

s ~6—(%n/v[$"]3/ . (A.04)

Using equation (2.28) for the normal component of the velocity,
this becomes

T~ %UV{[ 4.1} (A.05)

This gives for the magnitude of the vorticity in the planar
case,
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2 2
3 ~ 'g—-"-»e—u' , (A.06)

c

and for the finite system case,

6_2
v~ Ezal. (a-07)

We can now calculate the magnitude of the vorticity in a more
general (rotational) flow. This is a flow for which a potential
does not exist, hence the magnitude of the vorticity is given by
terms of the sort

(“J‘U}).

These may be estimated by calculating the cross derivative terms in
the potential analysis. The vorticity is then found to be of order

K+ U

o (A.08)
in the planar case, and of order
Sy 4
LY
(A.09)

c/Bl
in the finite body case only in the third-order solutions.

Thus, the velocity potential may be used with no loss in gen-
erality for describing these flows to second order.

From the above, it is seen that vorticity must be taken into
account in the third-order problem, and a velocity potential can-
not be used to describe the third-order wave behind the body. How-
ever, in the region of interaction of this wave with the rear shock
on the other side of the body, the shock strength has decayed suf-
ficiently that the vorticity is of order

to
E Sl (A.10)

c

for the planar case, whereas it is of order

s
&‘_U (A.11)

<
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only in the third approximation in the corresponding rotational flow.
Thus, the velocity potential may be used to study this interaction,
which appears as a second-order effect in this region.

For flows about finite systems, the Lighthill region is even
more distant, with a correspondingly greater decrease in the vortic-
ity. In this region it is of order

22 , U
—K——l"& ’ (A.12)

C

whence it must be accounted for only in the ninth approximation.
The vorticity in the second approximation to the corresponding
rotational flow is of order

K MU

—p< | (A.13)
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Appendix B

An Example: The Circular-arc Airfoil

We consider the solution for the wave structure emanating from
a symmetric, biconvex airfoil,” of circular arc section. The body
shape function is then

!
‘C(Eb)= o, Epe-2,
kA
= '_—_g.-_._.Eh , - }/z< Eb< yz , (B.Ol)
= O % <& |

and only the flow above the airfoil will be considered, as the flow
is symmetric about the axis ¥=0.

From equation (3.35) we have that ¥ = O in the regions de-
fined by the vertical characteristics for (g, [ > &:) and

@ = 2(/+47);::- b (B.02)

in the ngion swept out by characteristics from the body where,
from (3.34)

_ £ B
€, = a0 (B.03)
whence
g - 2E

These characteristics form a fan-like pattern and overlap the ver-
tical characteristics from ahead and behind the body. Shocks must
be inserted to render the solutions unique, and, by (3.12) must obey

dg,  2E
N

> (B.05)
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whence

B, = -Tév/'*"'[ , (B.06)

where the upper and lower signs refer to the leading and trailing
shocks respectively. It is seen that the first-order wave pattern
is symmetric about the vertical axis ( ¥= O ) for this symmetric
(fore and aft) profile. The strengths of the shocks are given as
a function of Vi by

[, ]‘m , (B.07)

and are seen to vary as the inverse square root of the distance,
for large distances, a well-known result for planar flows about
general sections.

The second-order solution is also zero along the freestream
characteristics upstream of the leading shock, and is by (3.42)
and (B.03)

¢ 64( ?6 6181 /}‘:’ (7}4%3
+ 14'v e
(5 g Vope . (.08

__) E % - XrM®

+ (g 1 (- %+ M- 3ﬁ*)(t+4v[)
_ MYy
Gpl 3,

in the region between the shocks, and

Mt

fi+ay - (5+ % Z) (8.09)

4= (3T

behind the trailing shock. The second-order shock displacement is,
by (3.18)

rm*

LY “(lzpt*i)w—*“_"[ + "‘2’Mz '75
+#—+i+(f 2,,,:.'* 313 7&) (+4V(

(B.10)

for either the leading or trailing shock. The second-order incre-
ment to the strength of the shock is thus
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Mﬂ'[¢ (5,7)+5¢ (E. 7)] 7 { (IZ'FL+6 {m—
+(6- /3=+%'A" 3 ):+4~l + (- %+ 3 ?rn (B.11)

IQ/»\)‘%—) + (G+ Mz~ %s;"‘ f)(’l+4vl‘)’“} >

which, for large distances behaves as

_ MA M ‘%)—’— (B.12)

and is seen to increase the strength of the leading shock, and de-
crease that of the trailing shock (since the coefficient in paren-
theses is positive for typical gases).

Behind the trailing shock, the potential is a function of
alone, whence the pressure in this region is zero to second order.
That ¢, is not zero, but a function of "7 , hints that there
is a wave of the right-running (or returning) family that is locally
of third order in strength, but has a cumulative effect of second
order. The behavior of this wave cannot be calculated using the
velocity potential, however, since the velocity and entropy pertur-
bations are of the same order in this region.

This wave is of interest because it must be included to give
results consistent to second order for certain global integrals
relating to 1lift and drag of the airfoil, and also because it even-
tually intersects the rear shock on the other side of the airfoil,
altering its position to second order. (In the symmetric case under
consideration, the wave may be imagined to be reflected at the line
of symmetry (the ¥ -axis) and thus eventually interact with the
upper rear shock.) See figure B.Ol.

This interaction occurs only at very great distances from the
airfoil, and at such distances that the shock has decayed suffi-
ciently for a velocity potential to again exist to the order re-
quired to study the interaction. Thus, a potential analysis may be
used to study the interaction, but vorticity must be taken into
account in determining the initial strength of the wave.

The characteristic equations for steady, planar, inviscid (but
rotational) supersonic flow are that

2,
JM dp = d© =0 (B.13)

]

along

%1'"15'\(9 s ) (B.14)
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Figure B.0l: Wave Systems associated with Body in
Supersonic Flight.

Substituting expansions in terms of our wave structure variables, we
find in the region behind the trailing shock, that the quantity

VL, g = BNy _ AL s

e%z_ ¥ F 17- g2 - (B.15)
is constant along the lines
dg  _
&y = K . (.16)



The invariant (B.15) may be calculated at the rear shock and is,
for our example,

2 arm® g L '
KFM 3»\4z 3,32“3'1)}(”47)”: > (B.17)

which, upon reflection from the X-axis, gives a wave of strength

M" 4  M™M* 24|
p-r {3M¢ 3}3?— )( [+ ZK'E)?’- ) (B.18)

which is propagated along lines of constant ¥ (linearized charac-
teristics).

Now, the region in which this wave interacts with the rear
shock is so distant from the airfoil that the shock has decayed to
the point where a potential again exists; i.e., the entropy per-
turbations are again small compared to the velocity perturbations
in the wave (B.18). (See Appendix A) In this region (which we
shall call the Lighthill region, after the discoverer of its im-
portance (1954)), we define the new independent variables

- Kg, (B.19)

= Kz'y]’

~3 m

whence -

[(5.7 (B.20)

where the jump in potential is to be calculated from (B.09) and
(B.18). From the latter we have

- (-3 M=+3,6 3)(“2@% ) (B.21)

or

279 ) —L— )

M 4 4
¢, = (3Mz‘ ;_/5’:* 7{,J,zg - (§qu* ’éﬁ) , (B.22)

where the constant has been determined by matching the shock shape
in this region with that in the wave structure region, using the
asymptotic principle. This procedure results in
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¢ '
E = \/7((’3741* gﬁz"’) v (35 3fst’* 3 )W} (B.23)

for the second-order correction to the location of the trailing
shock. For very, very large distances (i.e., large if )}, this
becomes

T ~ \/7(‘314“‘ ggf 1)) (B.24)

This last result differs from the expression given by Light-
hill (1954) for the analogous quantity in his analysis (equation
(4.49)). The quantity given there seems to correspond to the shift
in the rear shock beyond that calculated earlier by Friedrichs, and
thus must be added to the original coefficient K (defined in his
text between equations (4.09) and (4.10)). Also, since only the rear
shock is affected (a fact noted earlier in the same article by
Lighthill) this quantity must be multiplied by the ratio of total
mass flux excess in the simple wave to that in the rear portion
(coming from downstream of the peak value of the airfoil). Thus,
if for the upper shock Lighthill's equation (4.49) is replaced by

jj‘ ' [+ G-1)ME

f [ & dx M- 1 )

our results are brought into agreement.
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Appendix C

Mass and Momentum Fluxes in the Wave Systems

That the theory presented here gives a consistent representation
of the flow at large distances from the body may be verified by con-
sidering the asymptotic form of the solution as it relates to the total
forces on the body and to conservation of certain global integrals
(such as mass flux). Since the broad third-order wave behind the body
(in the Lighthill region) has a cumulative effect of second order, this
must be included in the analysis. We shall again restrict ourselves to
planar flows, where the complete second-order solution may be obtained,
and the strength of the third-order wave behind the trailing shocks may
be determined.

We shall consider integrating mass and momentum fluxes around con-
tours sufficiently far removed from the body that the asymptotic forms
of the solutions may be used, and show how these integrals correspond
to conservation of mass and momentum, thus giving the 1ift and drag
forces on the body. Consider the control volume shown in figure C.01,
around which we will integrate mass and momentum fluxes.

a b/

o o y, C

Figure C.01: Control Volume
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There will be no contribution to the flux integrals from a-b or e-f
since the flow is parallel to the control surfaces; there will be
a contribution from the difference of fluxes across c-d and f-a due
" to the increased entropy behind the wave systems; and there will be
a contribution from the integration across the primary wave systems
b-c and d-e. The effect of the third-order wave behind the body
will be accounted for as it alters the position of the trailing
shocks, and hence the contribution from the primary wave systems.
For the symmetric circular-arc airfoil, we need consider only
the upper half-plane. The excess mass flux in the primary wave
system is

%t
o, =[prdx = - Ve {B=-600 (c.01)
E

Thus, since

¢(F‘) = O) (C.02)
and
B(x) = (5 + 7& 3 {¢(F)+ E %, {;‘,)} (C.03)
- - T(-i + 3)
we have

Our Ue M5
(am). .= ek T(smz 3 . (C.04)

The excess mass flux in the entropy wake region, c-d, over that in
the freestream, f-a, is given by
(- -]

(am) J{é( DSy - -M(-J,»;;TFSJJ) (C.05)

where the surface has been taken far enough downstream that pressure
perturbations are negligible. Since entropy is conserved along
streamlines, the integral may be taken at the shocks, and using our
expression for the entropy jump at a shock, (C.05) may be written

Q MRS 4 4y
(am)_, = 0{3 { I3 (C.06)
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and is seen to exactly balance the excess mass flux in the primary
wave system, thus confirming that mass is conserved in the solution.
Note that in (C.03) the value of the potential in the Lighthill
region, (3.53), has been used.

The drag of the airfoil must be equal to the resultant of the
axial pressure force and the deficit of axial momentum flux through
the control surface. In the upper primary wave system, this is
given by ., -

t‘t : . }-*

(AP")E: JQU—(“-U)JX = Q..U” 2 ¢ “dx (C.07)

)

g
which, for our circular-arc airfoil is

G iw{(/m?) } (c.08

-4

which approaches zero as (/+47 for large 7 , and thus con-
tributes nothing to the drag. 'The deficit of axial momentum flux
in the entropy wake is

(ﬂfx)cd ff’u(‘* U)J (’..T[JSJ , (C.09)

where, again, the plane of integration is assumed sufficiently far
downstream that pressure perturbations are negligible. Thus,

— _4_ ooU-ZQTl
(d.r">c-d - 3 L_P—— (€.10)

which is exactly the drag on the upper surface of the airfoil which
is obtained by integrating the surface pressure times the axial
component of the normal to the surface.

The airfoil treated in the preceeding paragraphs has no net
1ift, since it is symmetric. To investigate 1lift forces, we con-
sider an airfoil with the same circular-arc upper surface, but
with a flat lower surface. Thus there will be no wave system from
the lower surface, and the airfoil will have a net (negative) second-
order 1ift. The control surface for this airfoil is shown in figure
C.02; note that we have included integration across the third-order
tail wave, which now is propagated to infinity below the section.
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Figure C.02; Control Volume for Lifting Airfoil

Here, the 1ift force must be balanced exactly by the resultant
of vertical pressure forces and momentum fluxes, integrated around
the control volume. We need consider only the integration across
the primary wave system, b-c, and the reflected (Lighthill) wave
system, d-e, since elsewhere the contributions are negligible. The
contribution due to integration across the primary wave system is

5 2
(A@)b:-ff (ot puiftx = =552(4650- g(0f, e

which for our case is
oanC Mfr'l er 21}}
4P = - o { TSR 12
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In this case, there is no '"Lighthill region'" effect upon the position
of the trailing shock, since there is no reflected wave coming from
‘below the airfoil. Integration across the third-order wave coming
from the upper, primary system

(Afj)ote. =£{T"7°'°+ ?‘rl} o
i S G R OIS

(C.13)

which for our case is
LUEMRY 4 M gz?}
(R R ETE

The sum of these two integrated pressure forces is thus

T 2
APJ - - éﬁip*_{” {FM4'— 2[32} X (C.15)

which is the familiar Busemann result for the second-order 1ift of
the section considered.
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Appendix D

The Structure of Shock Origin

We consider the second-order structure near the point of forma-
tion of a shock within the flow field, and its effect upon the point
at which the shock is first formed. Since the characteristics are
not revised after the first approximation, we cannot hope for the
second-order theory to give detailed local information at the point
of formation; however, we would hope that the solution at least ap-
proximates any such local behavior in some global sense. Such is
the case, and we will, in fact, show that the shock displacement pre-
dicted by the second-order theory at the point of formation corres-
ponds exactly to the shift in virtual origin the shock must have to
account for this local behavior.

To demonstrate this fact, we consider the planar flow over a
parabolic compression-expansion bump. The first-order theory pre-
dicts formation of a shock of finite initial strength for this case
within the flow field. (See Figure D.01)

nq

NI

first-order
characteristics

V2

bod

" surface
pd

1 2 =

Figure D.01l: Geometry of Shock Origin Problem.
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First, the wave structure solution will be found, and the second-
order displacement of the shock at its point of formation will be
calculated. The geometry of the actual characteristics (accurate
to second order) in the vicinity of the point of formation will
then be considered to show how this displacement corresponds to
the true local behavior.

1. Second-order wave structure solution

We consider the planar flow past the curved wall described by

fzp=° , €. <0
=K, O<E <1, (D.01)
= 2- (- ) . < E,<c 2,
=2 , 2 < Eb.

Then, we have by (3.35) that for O<Ex ],

-
¢° = 1_217 ) (D.02)
and for ¢ EG:(Z’
2.
(2-E)" (0.03)

¢°=—Z+ {4‘2‘7

A shock starts at (O)}i) with finite strength and obeys

Ko = 2.-]/2(/+217) . (D.04)

The second-order solution, by equation (3.42) is seen to be,
for O<¥E <« 1 (and ‘7< 2. )

(’j 3;3""73&)'751 + (‘"’*:11 23;::1)!" (D.05)

and for 1< E <2,

4- (% - B0 (4- ‘2%'1 gl})(,/:»_m'.z‘)‘é)

3. D.06
+ (&t B B0+ 4(jp-N)(2- K 009
3__ m’-
I IR
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Evaluating this along the position of the first-order shock yields

g2 _#M, ?) {(224_ 32"

95(7:',,‘7) ("3 M2 3/31 )/'2—(7:2—') ‘3[!:.
+"§&)‘VI+ 3~ Mt 3!31 }{2({4—2*{)} o7

_2rme 49
E7 R

and since

b (£, ) = -4 (D.08)
?( )7 czz7;z;%3’ )
the second-order shock displacement is given by (3.18) as
M* I\ s 2 ™t
E’=—(—6—,§_z+'3_) 2(1+2 )+(—§-+'ﬁ7_ ,_+ 3)
(D.09)

T 2 1
{(2,8 ‘gr:z ‘f)"l B M’—*zsr; 1429’

Finally, the displacement due to second-order effects at the
point of formation is

2
B =2+mp-Eat % (0.10)

2. Interpretation in terms of local structure

The effect of second-order corrections to the characteristics
is to give a local structure to the point at which all the charac-
teristics from the compressive portion of the body converged accord-
ing to the first-order theory. The geometry of these characteris-
tics (accurate to second-order) and the shock wave in the neighbor-
hood of the point of shock formation is now considered. The left-
running characteristics are given in terms of our wave structure
perturbation potential as

vl) e+ MT(?Z 2/3'-+/4)Q5 o (D.11)
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Since the flow may be described as a simple wave to second
order, the flow deflection angle

Mt
O=- 7"?55 * M'r’-( Z- zpz(ﬁ;) *o ) (D.12)

and, hence, also ¢& , are constant along these characteristics.
Application of the boundary condition at the body surface gives

2 [
ol A0 GE] |

whence the equation of the characteristics becomes

2
'

46) <P B, )0 (B B o

Thus, for the parabolic bend described by

fley= &2 (D.15)

)

we have

G
"E) = - 2,4 "(lz_ + e 4{r5M+ IR+ (D.16)

which may be integrated to give the equation of the family of char-
acteristics

2
E-E + ZEL"{ (IZ %+4ﬁgfy[=o, (D.17)

accurate to second order. Detailed information about the charac-
teristics from only the compressive portion of the body is essen-
tial in describing the early stages of formation of the shock, as
will later be seen.

The shock will first be formed in the vicinity of the envelope
of these characteristics. This envelope is determined by elimin-
ating ¥, between the preceeding equation and the equation obtained
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by differentiating it with respect to the parameter, E,

M 12 grM? -
-1+2v- (24 - At +8/«)Ebvl = O. (D.18)

Thus, the envelope is parametrically described by
MET 4—3-__2_er 2
E=- p (6 M2 /32. 42/‘\) K. s

2, 3 z (D.19)
‘7 = /a + —’%—T(G-I-Mz—%-rZ/A)Eb’

from which it is seen to be the upper half of the parabola with
vertex at ( O)'%L) and opening to the left if the factor

3 2rM*
R = 6+T,,-—2_—- 73-1' +2/4A_ (D.20)

is positive, or the reflection about the origin (vertex) of that
curve if W 1is negative. In the vicinity of the origin of the
shock, then, the problem naturally divides itself into two cases
depending upon the algebraic sign of W . (For air, treated as
a calorically perfect gas, ®=O when M = 1.33, is negative for
lower supersonic Mach numbers, and is positive for greater Mach
numbers.) For positive 2R , the shock starts with zero strength
at .(O, Y2 ) -- the same point at which the finite-strength. first-
order theory shock originated -- and builds up to full strength in
a region of scale 0(m) in the ¥-W plane. For negative W ,
the shock again starts with zero strength at the point on the en-
velope corresponding to the characteristic from the steepest por-
tion of the body, and develops for a short distance (again of
0(T) in the E-v plane) with disturbed flow on both sides. See
figures D.02 and D.03.

If W=0, the envelope collapses to the point ( O,%2) as
in the first-order theory, and the shock starts from that point
with finite strength. Since the total length scale in this local
development is short, in considering the path of the shock, we
will use simply the characteristic-bisector rule with negligible
error.
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Figure D.03: Structure of Shock Origin ( X< O )
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a. Case I, R> O :

For the case when R is positive, the shock starts at ( 0,/Z)
with zero strength, and its path is determined as the bisector of
the freestream characteristics and those coming from the body for

O < By ¢ i . The shock will intercept these characteristics
coming from the body before they can form the envelope calculated
in the preceding section. (See Figure D.02). We set up a local
coordinate system with origin at the point ( O, V2.) and

(D.21)

< £
1]
%
5

X

—~
O
~—

Then, the characteristics coming from the body are described

X = -2 Eb(a_-—i-s:b) . O< g < 1 , (D.22)

and the slope of the shock at every point is determined by the bi-
sector rule

dx n
d;S =z (-ZE.,+ O) = -§,. (D.23)
Eliminating ®y from this last equation using (D.22) gives

L SN 7
da :] 3_+x . (D.24)

This equation cannot easily be solved in general due to its non-
linear nature, but the unique solution passing thwvough the origin
is easily verified to be

= 3,2
X = 43 . (D.25)

The shock follows this curve until the point where it intersects
the characteristic coming from E,=1, (i.e., from the inflection
point on the body). This point is found to be
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X
il

~Va
n = 3. (D.26)

From this point on, the shock is determined to satisfy the appropri-
ate relations between the freestream characteristics and those com-

ing from the expansive portion of the body, as in the wave structure
solution. If we analytically continue this shock shape back to the

value ﬂ::/@; (i.e., y = 0), which is the origin according to first-
order theory, we find

x = /3

or equivalently,

kX
E = z+;4’;—23’;1+2§ , (0.27)

ty

which is precisely the displacement predicted by the second-order
wave structure theory. Thus, the displacement of the origin of
the shock predicted by the second-order wave structure theory cor-
responds to the displacement of the virtual origin the shock must
have to account for the local formation process.

b. Case II, we< O

For the case when X is negative, the shock starts at the
point on the envelope of characteristics corresponding to Eg= 1
with zero strength. The path of the shock is then determined as
the bisector of the characteristics coming from the compressive
( O < &, <« 1 ) and expansive ( 1 < ¥y <« 2 ) portions of
the body, respectively. (See Figure D.03). The shock will again
intercept the characteristics coming from the forward portion of
the body before the envelope is formed. Using the same local co-
ordinate system as in Case I, the shock slope obeys

Py o

when the body has been assumed straight for &,>f with no loss in
accuracy. Again, a general solution to this equation is not found,
but the particular solution satisfying the appropriate initial con-
ditions is

¥ = 4_3 _.éy..}g , (D.29)



The point after which the shock again becomes determined by the
freestream characteristics and those coming from the expansive por-
tion of the body is

Xx=0,
(D.30)

a=—”3.

For this case, since the shock is formed for <l%;, we merely note
the value of Esh when 751’2_. It is

( = '
E = 2+~ f;;::-+ 2%§3 R (D.31)

again corresponding to the displacement of the virtual origin of
the shock predicted by the second-order wave structure theory.

68



Appendix E

Some Numerical Comparisons

The primary importance of higher-order asymptotic theories
is the justification they provide for the lower-order theories,
by showing that they are the first step(s) in a rational approx-
imation to the solution in some 1limit. Since the series thus
produced are not necessarily convergent, the inclusion of higher-
order terms can worsen numerical accuracy for calculations at
finite values of the appropriate small parameter -- a fact for
which asymptotic series aré somewhat notorious. It is, however,
still a matter of interest to see how the inclusion of such higher-
order terms affects numerical results, and, for that reason two
such examples are included here. The two simplest examples in -
each, planar and axisymmetric flows, are considered because (1)
exact inviscid calculations were readily available for comparison,
and (2) only the simplest geometries are conducive to solution in
the axisymmetric case. The shock angles predicted for these flows
are calculated and compared with the exact inviscid solutions in
the following sections.

E.1l. Semi-infinite Wedge (Planar flow)

The body shape function for a semi-infinite wedge of semi-
angle -+t is

'P('Eb)= o, E,<O ,
(E.01)
= 1 N O < E,

Thus, in the region of disturbed flow, the first-order potential
is

¢°E =-1 (E.02)

and the shock separating this region from the undisturbed stream
obeys

5="Yz . (E.03)

The second-order potential, evaluated at the first-order
shock location, E=EK,, is then
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2 ' '
%, (&) = (1+2f2- %%, + M3~ ’}/2)7 , (E.04)

whence
3rm*
X = (1“‘5‘1711‘73%*“/%‘1)/12)?1 . (E.05)

The shock location, to second order is thus

5= - 2{1-Fleit- T % %)) (5. 06

whence

cot Q= 43 rs{i 3(4 M-F(Z*‘#fz 341;4 —5-2?))}_ (E.07)

Numerical values for the shock angle for flows in air (treated
as a calorically perfect gas with r=1.2, M=-1.1, and
2/ = 0.4) are compared with results of exact inviscid calculations
from the Ames Research Staff (1953) in Figures E.0l1 and E.02. The
second-order theory is seen to give considerable improvement in
numerical accuracy even for quite high Mach numbers (e.g., PQ” = 5).

E.2. Semi-infinite Cone (Axisymmetric flow)

The calculation for the cone is much more complicated than the
wedge for two reasons. First, an additional scaling region near the
body must be considered, and this '"'slender body" solution used to
determine the local solution by matching. Secondly, both of these
inner solutions must be determined to third order to determine the
true second-order wave structure solution.

All of the details of this extremely tedious calculation will
not be given here. The general nature of the slender body theory
from the viewpoint of matched asymptotic expansions may be found
in Ashley and Landahl (1965). No peculiar difficulties are en-
countered in extending the solution to third order (for the case of
a cone!) beyond algebraic tedium. Only the radial derivative of
the third-order solution was obtained, since this determines the
local solution. (The complete solution is nhecessary if we are inter-
ested in pressures near the body.)

For the flow over a slender cone of semi-angle T , the first-
order shock strength is of O(+*), whence a velocity potential exists
to the required third order (which describes perturbations of Q(r¢)
in the local region. This local solution is of the form
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a'l/T:-— Z z{ﬁ\/_——‘t- }
M* 4{(’. VEE, ( 10+ 29, -2 )‘/"_tiln(l_ )(E o8

where the conical variable
t="7g (E.09)

has been introduced, and particular integral terms which do not
enter directly into the determination of the wave structure so-
lution have been omitted for clarity. Of these omitted terms,
some will automatically match with particular integral terms in
the wave structure solution, and the others will be negligible.
The constants in this local solution are determined from the
slender body matching to be

Q=1 ,

=(2—{42)L41~275-1—}§M’-‘% ’

C=_ZFM{~B+ G"3JL‘.,Z+ (4 +£“a)} (E.10)
+2M*(4-8)+ 428 ﬁ,_.av\Z"'.@nTp (-¢+6m?
+Mz.‘2FM1)A4—r/3 -1 - 4Mhy ’lﬁqz’r""z}

- %1-» %3,,,1 - rM}q.-)/z. .

The large distance (i.e., t-» ] ) behavior of the local so-
lution is given by

P 2K ED” 2Kynn g (28"

: (E.ll)
_%&LMZ;.:{,_ /C"'(’o*?é’/.; 2/«\)1« }(

which must match with the small-distance behavior of the wave
structure solution,

L 2 2 K y2 2K S
(ﬁ¢>~‘~"{§;‘f-' MG - "[“M 1H (E.12)

+ (g jﬁ' %)F Ty}t
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where, again terms which do not enter directly into the determina-
tion of the unknown functions in the wave structure solution have
been omitted. The wave structure solution is thus determined by
the conditions

Y,

F-(.Eb)— Sg—r—b) )
G(Eﬁ.) ,13(2.5‘“ (E.13)

. %
H(m) = {HRC+ (0- T 2 1 2 V2R, | ()

where
=‘7{1+‘|//+-z§‘71}. (E.14)

The first-order shock position is then found to be

EQ = ———z:‘vl . (E.15)

The one-and-one-half-order correction is

3 2

And the second-order correction is

rM* 3
E = { rm+ ( Fa 'E[s‘--f>‘o"‘\3g-s( (E.17)
(Sl 2
+2 - 320%_- /g—’z‘;%z’@.}v[
Thus, the shock angle is given by

ot &= p{ - EE {128 Eie(2 il
+(l0-3 pz+4/4)2~.3K“ % + :'75_(')—',% (E.18)
SRR

Numerical values for the shock angle for flows in air are
again compared with those from exact inviscid calculations (Ames
Research Staff (1953)), and are presented in Figures E.03 and
E.04.
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Figure E.03: Shock Angle on Ten-degree Cone.
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Note that, generally, the one-and-one-half-order solution does not

give results that are appreciably better than the
and we must go to the full second-order theory to
improvement. That the second-order theory, which
local third-order theory gives increased accuracy
values of body thickness, is probably due in part

first-order theory,
achieve noticeable
is based upon the
for these finite

to the fact that

the theory is of second order near the shock. Third-order theories
are often very bad for numerical calculations at finite values of

the asymptotic parameter.
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